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Hepatitis E virus (HEV) is the causative agent of hepatitis E in humans
and the leading cause for acute viral hepatitis worldwide. The virus is
classified as a member of the genus Orthohepevirus A within the
Hepeviridae family. Due to the absence of a robust cell culture model
for HEV infection, the analysis of the viral life cycle, the development
of effective antivirals and a vaccine is severely limited. In this study,
we established a protocol based on the HEV genotype 3 p6 (Kernow
C-1) and the human hepatoma cell lines HepG2 and HepG2/C3A with
different media conditions to produce intracellular HEV cell culture-
derived particles (HEVcc) with viral titers between 105 and 106 FFU/mL.
Viral titers could be further enhanced by an HEV variant harbor-
ing a mutation in the RNA-dependent RNA polymerase. These HEVcc
particles were characterized in density gradients and allowed the
trans-complementation of subgenomic reporter HEV replicons. In
addition, in vitro produced intracellular-derived particles were infec-
tious in liver-humanized mice with high RNA copy numbers detect-
able in serum and feces. Efficient infection of primary human and
swine hepatocytes using the developed protocol could be observed
and was inhibited by ribavirin. Finally, RNA sequencing studies of
HEV-infected primary human hepatocytes demonstrated a tempo-
rally structured transcriptional defense response. In conclusion, this
robust cell culture model of HEV infection provides a powerful tool
for studying viral–host interactions that should facilitate the discov-
ery of antiviral drugs for this important zoonotic pathogen.
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Hepatitis E virus (HEV) is a positive-orientated, single-stranded
RNA virus and the causative agent of hepatitis E in humans.

The virus is classified as a member of the genus Orthohepevirus A
within theHepeviridae family. With more than 20 million infections
per year, it is responsible for the majority of acute hepatitis
worldwide leading to up to 70,000 deaths (1). At least 4 human-
pathogenic HEV genoytpes have been described (gt 1 to 4).
Genotype 1 and 2 solely infect humans and are mainly present in
developing areas causing periodically waterborne outbreaks via the
fecal–oral infection pathway (2). Especially pregnant women har-
bor a high risk for a fatal outcome during HEV gt 1 infection with
mortality rates up to 30% in the last trimester (3). In contrast, gt 3
and 4 are zoonotic pathogens with their main reservoir in pigs,
wild boars, and deer (4). Therefore, major risk factors for virus
transmission include contact with these animals or consump-
tion of contaminated meat products. The latter genotypes are
responsible for most of the infections in developed nations.
HEV gt 3 infections in humans are usually self-limiting. However, in

patients with preexisting liver disease, acute-on-chronic liver failure
can develop. Additionally, HEV gt 3 infections can progress also to
a chronic stage in immunosuppressed individuals with the risk for
the rapid development of liver cirrhosis and eventually hepatic
decompensation with the need for liver transplantation (5). There is
no recommended specific treatment for patients with acute-on-
chronic liver failure caused by HEV. The current therapeutic
options are limited to the off-label use of ribavirin (RBV) and
pegylated IFN-α (pegIFN-α), which are often associated with se-
vere side effects and are contraindicated in pregnant women (6, 7).
HEV is a quasi-enveloped virus circulating in the nonenveloped

state in bile and feces but is found wrapped into cellular membranes
in the blood stream (8). The 7.2-kb RNA capped genome encodes
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for 3 ORFs: the nonstructural polyprotein required for RNA
replication (ORF1), the capsid protein of the HEV virion (ORF2),
and a small multifunctional protein with a molecular mass of 13
kDa (ORF3) (9). The HEV life cycle and host–virus interactions
that determine the outcome of infection have been difficult to
study, especially because robust cell culture models for HEV were
not available in the past. This long absence of in vitro systems also
severely limited the development of effective antivirals and vac-
cines targeting HEV. Many different cell culture systems have
been tested in the past using various HEV strains, but mostly viral
replication progresses very slowly and infection with low virion
counts often results in nonproductive infection (10–12). Recent
breakthroughs have been achieved by identifying compatible cell
lines and specific HEV strains (11). In this study, we report the
establishment of a robust HEV cell culture system based on an
HEV gt 3 recombinant cDNA clone and the human hepatoma cell
lines HepG2 and HepG2/C3A to produce intracellular HEV cell
culture-derived particles (HEVcc) with viral titers up to 106 focus
forming units (FFU)/mL. We observed efficient infection of pri-
mary human and swine hepatocytes as well as in vivo propagation
with high viral loads in liver-humanized mice. Furthermore, study
of dynamic viral–host interactions via transcriptomic network
analysis after HEV infection of primary human hepatocytes
(PHH) revealed distinct temporal antiviral responses.

Materials and Methods
HEV Constructs and in Vitro Transcription. A plasmid construct containing the
full-length HEV genome (Kernow-C1 p6 clone, gt3; GenBank accession no.
JQ679013) and a variant harboring an RNA-dependent RNA polymerase mu-
tation G1634R (13) were used to generate HEV in vitro transcripts as previously
described (14). Capping of the constructs was performed using Ribo m7G Cap
Analog (Promega). A subgenomic Kernow-C1 p6 HEV sequence coupled to a
Gaussia luciferase reporter gene was used as described before (15). A HEV p6-
based GFP reporter construct (green fluorescent protein) was constructed by
replacing the Gaussia luciferase. A plasmid encoding the full-length HEV in-
fectious clone HEV83-2-27 (GenBank accession no. AB740232) (16) and a re-
spective Gaussia luciferase reporter replicon therefore were kindly provided by
Koji Ishii as well as Takaji Wakita (Department of Virology II, National Institute
of Infectious Diseases, Tokyo, Japan). Further details regarding the cloning strat-
egies and exact nucleotide sequences can be obtained upon request.

HEV Infectious Virus Production Assays. For transfection we used the electro-
poration technique in accordance to previous reports (17). In brief, 9 ×
106 HepG2 or HepG2/C3A cells were resuspended in 400 μL Cytomix containing
2 mM ATP and 5 mM glutathione, mixed with 5 or 10 μg of HEV RNA and
subsequently electroporated. Cells were immediately transferred to 13.6 mL of
either DMEM complete or MEM low IgG FCS, and the cell suspension was
seeded in respective plates (7.8 × 105 to 1.3 × 106 cells per well for 6-well plates,
7.1 × 106 for 10-cm dishes, and 1.5 to 2.5 × 105 cells per well for 24-well plates).
After 24 h the mediumwas changed to fresh medium. Viral particle production
was determined at designated time points posttransfection (p.t.) by harvesting
the extracellular particles in the filtered (0.45 μm) supernatant and the in-
tracellular virus by resuspension of the cells in a 5 times lower volume of the
respective medium comparing to the harvested supernatant and lysis by 3
repeated freeze and thaw cycles. After a high-speed centrifugation step which
separates the cell debris, the supernatant was harvested. Twenty-four-well
plates were used for indirect immunofluorescence stain to check for HEV
capsid-positive cells at designated time points

Data Availability. The RNAseq data discussed in this publication have been
deposited in National Center for Biotechnology Information’s Gene Expression
Omnibus (GEO) (18) and are accessible through GEO Series accession number
GSE135619 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE135619).

All materials, data, and associated protocols will be made available upon
request.

Additional materials and methods are posted in SI Appendix.

Results
Production of High-Titer HEVcc by a Combination of Different
Hepatoma Cells and Media Conditions. Although existing HEV
cell culture models are important achievements, these systems are

limited in efficient viral spread and low viral titers (11). With the
aim to improve production of HEV in tissue culture, we charac-
terized extracellular and intracellular viral titers of the widely used
Kernow-C1 p6 strain (gt 3) in different combinations of human
hepatoma cell lines and media conditions for viral production and
infection (Fig. 1A). HepG2 cells or a subclone thereof, HepG2/
C3A cells, which were selected for strong contact inhibition of
growth, were transfected with in vitro transcribed HEV p6_wt
RNA. Each cell line was cultivated in either DMEM complete or a
medium with lowered IgG levels (MEM low IgG FCS). After 7 d,
extracellular and intracellular virus particles, resembling the
enveloped and nonenveloped states of HEV, were harvested and
used to inoculate both naïve cell lines cultivated in the 2 media. In
total, we tested 32 different combinations (Fig. 1 A and B).
Depending on the cultivation condition, infectious viral titers of
intracellular-derived virus ranged from 5 × 102 to 5 × 105 FFU/mL
and for extracellular virus from 2 × 101 to 5 × 103 FFU/mL as
visualized by a heat map (Fig. 1B). Absolute viral titers with in-
dividual experimental data are shown in SI Appendix, Fig. S1A. A
combination of transfection of HepG2 cells supplemented with
DMEM complete and subsequent infection of HepG2/C3A in
MEM low IgG FCS yielded the highest intracellular-derived viral
titers (Fig. 1B). Immunofluorescence analysis of transfected cells
revealed high percentages of HEV ORF2-positive cells at day
7 p.t. (SI Appendix, Fig. S1B). Of note, fluorescence intensity in
transfected cells grown in MEM low IgG FCS was lower compared
to DMEM, most probably due to decreased replication. In line
with this finding, produced titers were notably lower in MEM low
IgG FCS cultivated HepG2 and HepG2/C3A. Similarly, extracel-
lular viral titers reached the optimum when virus production was
performed in either HepG2 or HepG2/C3A cells supplemented
with DMEM complete and infection was conducted in HepG2/
C3A cells (Fig. 1B). Here we observed robust infection and rep-
lication of target cells indicated by ORF2 positivity (Fig. 1C).
The viral RNA determined in 50 ng of total RNA for the

produced intracellular viral particles with the 4 different cell and
media conditions (HepG2 cells with DMEM complete or MEM
low IgG FCS and HepG2/C3A with DMEM complete or MEM
low IgG FCS) was comparable ranging between 1 × 106 and 3 ×
106 HEV copy numbers (SI Appendix, Fig. S1C). The results
confirmed the beneficial effect of the low IgG FCS during the
HEV infection process and not during viral production. For the
extracellular-produced viral particles, RNA copy numbers were
lower compared to the intracellular-derived particles resembling
the infection data (SI Appendix, Fig. S1C).
A similar infection efficiency with the optimal conditions

could be achieved in Huh7.5 cells (SI Appendix, Fig. S1D). These
cells were not followed up upon, due to their RIG-I deficiency.
Next, we applied these media conditions to the HEV cell culture
model described by Schemmerer et al. (19), which is based on a
persistently HEV gt3 47832c isolate-infected A549 cell line.
Intracellular- and extracellular-derived viruses of these cells were
harvested and used to infect either HepG2/3CA or A549/D3
cells, a A549 subclone selected for high permissiveness to HEV
infection, in DMEM complete or MEM low IgG FCS media
conditions. As depicted in SI Appendix, Fig. S1E, viral titers for
intracellular-derived 47832c virus ranged between 5 × 104 and
2 × 105 FFU/mL in the different conditions and around 1 ×
103 FFU/mL for the extracellular-derived particles (SI Appendix,
Fig. S1E). The low IgG FCS medium was superior over DMEM
complete in the HepG2/3CA infection with intracellularly har-
vested particles, in line with the p6 isolate. However, for the
infection of A549/D3 cells, the DMEM complete media resulted
in higher viral titers. In conclusion, we established a simple HEV
cell culture protocol based on the HEV Kernow-C1 p6_wt strain,
which could also be confirmed with other HEV isolates and cell
lines. The combination of the human hepatoma cell lines HepG2
supplemented with DMEM complete during virus production
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and HepG2/C3A in MEM low IgG FCS during virus infection
allowed robust production of infectious HEVcc with titers over
105 FFU/mL for the intracellular-derived particles (Fig. 1A and
SI Appendix, Fig. S1A).

Trans-Complementation of HEV RNA into Infectious HEVtcp. Based on
the efficient production of HEVcc in vitro, we next aimed to de-
velop a system that supports particle production by trans-packaging
of subgenomic RNAs and therefore would allow the generation of
viral-like particles with reporter activity. Furthermore, such an
experimental system should be helpful to decipher mechanisms
of HEV assembly and packaging, which is not well defined
(20). To explore if assembly-deficient p6 genomes with dele-
tions in the ORF2/3 can be rescued by trans-complementation, we

cotransfected HEV reporter constructs with replaced ORF2 gene
together with full-length HEV p6_wt genome as a helper virus
RNA into HepG2 cells cultivated with DMEM complete.
Seven days later, cell lysates containing intracellular infectious vi-
rus particles were harvested to infect naïve HepG2/C3A cells in
optimized medium conditions. Successful trans-complementation
of viral particles, termed HEVtcp, was assessed by determina-
tion of GFP or Gaussia luciferase (Gluc) activity (Fig. 2A). The
assembly-defective HEV RNA encoding aGaussia luciferase was
encapsulated into infectious particles as evidenced by easily de-
tectable reporter activity in the inoculated cells (Fig. 2B), which
was controlled by transfection of p6_wt and reporter RNA alone.
In addition, RBV treatment reduced transduction of reporter ac-
tivity (Fig. 2B). Next, trans-complementation of GFP reporter
RNA demonstrated absolute HEVtcp titers of 1 × 102 FFU/mL
with simultaneous detection of the wild-type viral strain with 5 × 103

FFU/mL of intracellular particles (Fig. 2C). Single transfections
and RBV incubations served as controls.
The viral RNA detected with an ORF1-based PCR of the

HEV trans-complemented cell lysates could be determined with
3 × 105 copy numbers per 50 ng total RNA and was reduced by
RBV treatment (SI Appendix, Fig. S2 A and B). The p6_wt viral
loads, where no subgenomic reporter RNA was present, were
higher compared to the cotransfection setting as expected. In the
cell lysate of the p6_Gluc cotransfected conditions, RNA copy
numbers of 2 × 104 could be detected (SI Appendix, Fig. S2A).
Similar results were observed for the GFP reporter replicon
settings, with the exception of higher RNA copy numbers of the
GFP replicon only cell lysates (SI Appendix, Fig. S2B).
To directly show that virus-like particles carrying the GFP

reporter gene had productively infected the target cells, we
assessed infection events at the single-cell levels using indirect
immunofluorescence and flow-cytometry. Employing antibodies
directed against ORF2, we detected cells expressing only ORF2
as well as cells expressing only GFP (Fig. 2D and SI Appendix,
Fig. S2 C and D). These data suggest that besides viruses with
full-length HEV genome, single round infectious particles con-
taining the GFP reporter RNA had successfully infected the target
cells (highlighted by white arrows) (Fig. 2D). The relative pack-
aging efficiency of the GFP RNA in comparison to the p6_wt
encoding RNA was analyzed via flow cytometry. As depicted in SI
Appendix, Fig. S2 C and D, in the untreated HEVtcp sample a 1:60
ratio of the GFP reporter genome in comparison to the HEV
p6_wt virus, indicated by the percentage of HEVcc- and HEVtcp-
infected cells (SI Appendix, Fig. S2 A and B), was observed. Finally,
we performed RNase A treatments of the intracellular- and
extracellular-derived HEVtcp to demonstrate that the packaged
genome is fully protected and no replicon-transfected cells were
transferred. The RNase treatment did not result in a reduction
of intracellular and extracellular HEVtcp titers, and only in-
tracellular RNA that was not yet packaged into viral particles
could be degraded (SI Appendix, Fig. S2 E and F). In summary,
these results showed that HEVtcp particles are assembly- and
secretion-competent and infectious. Taken together, a HEV
trans-complementation system could be implemented enabling
the analysis of HEV assembly and packaging.

Impact of an RNA-Dependent RNA Polymerase Mutation on HEVcc
Production. Ribavirin treatment failures were linked to the selec-
tion of a distinct HEV polymerase variant (G1634R) in some
chronically HEV-infected patients resulting in increased replica-
tion fitness (13, 21, 22). To assess if this mutation further increases
viral production in tissue culture, we used the described protocol
and determined virus production of p6_wt and p6_G1634R in a
time-dependent manner (Fig. 3A). For both strains, newly pro-
duced infectious viral particles reached a maximum 7 d after
transfection with a reproducible slight increase for the mutant viral
strain (Fig. 3A). Immunofluorescence staining of ORF2 indicated
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viral spread in the HepG2 cells with a high rate of infected cells
and an increase of ORF2-positive cells over time (SI Appendix, Fig.
S3A). HEV RNA determination for the intracellular-derived
particles revealed higher levels for the mutant viral strain, which
increased over time (SI Appendix, Fig. S3E). For the extracellular-
derived particles, copy numbers plateaued at 106 per 50 ng total
RNA (SI Appendix, Fig. S3E). Furthermore, mean fluorescence
intensities of ORF2 staining were obtained from a 5-pixel-wide

cytoplasm ring (cytoring) following segmentation of DAPI
stained nuclei using CellProfiler (23). To distinguish noninfected
cells from infected cells a minimum intensity threshold was de-
termined (SI Appendix, Fig. S3B), which showed a higher number
of antigen-positive cells in the case of p6_G1634R, which accu-
mulated over time (Fig. 3B). These results were supported by an
analysis of the ratio of ORF2-positive cells to the total cell number
(SI Appendix, Fig. S3C). Indeed, we also observed a trend to bigger
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foci sizes at later time points in p6_G1634R-transfected cells,
assessed by automatically counting the number of nuclei per focus
(SI Appendix, Fig. S3D). Quantification of the viral titers 7 d p.t.
demonstrated significantly higher titers of intracellular infectious
particles of 4.7 × 105 FFU/mL for the p6_G1634R compared to
around 1 × 105 FFU/mL for the p6_wt titers, with 1 viral stock of
even 1 × 106 FFU/mL (Fig. 3C). In the case of the extracellular-
derived particles, only a slight increase from 3.8 × 103 FFU/mL for
the wild-type strain to 4.9 × 103 FFU/mL was observed for the
strain with the mutation in the RNA-dependent RNA-polymerase
(Fig. 3C). These results were confirmed by an analysis of the HEV
RNA copy numbers (SI Appendix, Fig. S4A). To universalize our
results, we analyzed another gt 3 strain (HEV83-2‐27) that lacks
the insertion in the hypervariable region (HVR) (24). Introduction
of the mutation in a Gaussia reporter replicon revealed no en-
hancement of viral fitness as previously demonstrated for the p6
strain (13, 22), neither when assessing HEV RNA copy numbers
(SI Appendix, Fig. S4B) nor when measuring luciferase activity (SI
Appendix, Fig. S4C). However, using the full-length system, in-
tracellular and extracellular viral titers of 2.8 × 103 and 2.2 ×
101 FFU/mL could be produced. Introducing the G1634R muta-
tion significantly improved particle production to 7 × 103 FFU/mL
for intracellular virions (Fig. 3D), while again for extracellular
particles only a duplication of infectious units was noted. The
specific infectivities, defined as number of RNA copies per
infection event, were comparable between HEV p6_wt and
p6_G1634R with intracellular-derived virus ranging from 4.0 to
4.8 × 10−2 and for extracellular virus from 0.9 to 2.4 × 10−2 FFU/
RNA copy, respectively. In the case of the 83-2-27 strain the
specific infectivities were lower, ranging from 3.0 to 3.7 × 10−3

(intracellular) and 2.9–5.1 × 10−5 FFU/RNA copy (extracellular).
These data indicate that the G1634R mutation in the RNA-

polymerase of p6 could further significantly improve viral spread
representing the strain with the highest efficiency in virus pro-
duction. Viral infectivity could be propagated over several cell
passages but, however, was reduced by 1 order of magnitude after 5
passages (SI Appendix, Fig. S4D). The produced intracellular-
derived viral particles of p6_G1634R could be neutralized at high
dilutions of a WHO standard harboring HEV-specific antibodies,
while the membrane-wrapped extracellular particles required
higher concentrations for inhibition (SI Appendix, Fig. S4E). To
visualize RNA replication of p6_G1634R in transfected HepG2
cells, specific probes against the positive strand RNA of ORF1 and
ORF2 were designed and detected in a fluorescence in situ hy-
bridization (FISH) assay. As depicted in Fig. 3E, both ORF1- and
ORF2-encoding RNA could be detected in p6_G1634R replicat-
ing cells, which was ablated in RBV-treated cells (Fig. 3E). This
method can be employed to study colocalization of the distinct
subgenomic RNAs and is of special interest in the view of the fact
that potent ORF1-specific antibodies for immunofluorescence
are lacking.
Next, we examined the density of intracellular- and extracellular-

produced p6_wt and p6_G1634R particles by iodixanol gradient
centrifugation. Gradient fractions were collected after centrifuga-
tion and analyzed for the presence of HEV RNA and infectious
virions. As depicted in SI Appendix, Fig. S5A, p6_wt and mutant
intracellular-derived particles peaked at high densities of around
1.25 g/mL indicative of mainly nonenveloped viruses, while for
extracellular-derived particles, RNA levels at lower densities were
observed (SI Appendix, Fig. S5). For the extracellular particles,
infectious virus could be detected between densities of 1.05 and
1.1 g/mL with no major differences between the wild-type and the
mutant strain. Collectively, these results indicate that high-titer
p6_wt and p6_G1634R display similar biophysical properties.

Infection of Humanized Mice with HEVcc. Recently, several studies
demonstrated that human liver chimeric mice can be infected
with HEV and are useful tools for studying chronic HEV infection
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(25–28). However, previous inoculations of mice with HEVcc
particles resulted in low viral titers in stool specimens and were
negative in plasma samples (27). To investigate the infectivity of
the optimized cell culture system-derived HEVcc, humanized mice
were intraperitoneally infected with 2.5 × 104 FFU/mouse of
intracellular-derived p6_wt or p6_G1634R virus. As depicted in
Fig. 4, HEV RNA of both strains were detectable in high copy
numbers in the feces of infected animals over several weeks
without decline (Fig. 4). Importantly, this was also the case for
plasma samples with levels up 108 RNA IU/mL. The p6_G1634R
resulted in similar infection levels compared to the wild-type
strain, with the exception of mouse 6, which showed a delayed
viral growth (Fig. 4). In summary, our HEVcc cell culture system
allowed efficient infection of humanized mice, which enabled de-
tection of viral RNA in murine plasma samples in addition
to feces.

Infection of Primary Human and Porcine Hepatocytes with High-Titer
HEVcc. Adult PHH are the target of HEV in vivo and represent
the most authentic cell culture system for hepatotropic viruses.
To investigate the potential of the high-titer HEVcc particles to
infect PHH, we challenged these cells with intracellular-derived
p6_G1634R particles with a MOI of 1. After 4, 8, and 12 h,
resembling early to intermediate cellular responses to viral
challenge, as well as after intermediate to late responses (24, 48,
and 168 h postinfection [p.i.]), we measured viral replication and
propagation, along with temporal transcriptional changes in the
infected primary cells (Fig. 5A). Kinetics of viral replication
determined by RT-PCR showed increasing RNA levels 24 h after
infection, which peaked at the end of the experiment 168 h p.i.
(Fig. 5B). Administration of 25 μM RBV inhibited HEV replica-
tion. Immunofluorescence analysis of infected cells demonstrated
a high rate of about 30% ORF2-positive PHH, determined with
CellProfiler as described above (Fig. 5C). Replication of ORF1
was again visualized via FISH (SI Appendix, Fig. S6). Immuno-
fluorescence staining of ORF2 protein and in situ hybridization of
ORF1 RNA proved efficient viral transcription and translation in
PHH. Additionally, we could harvest newly produced infectious
virions from infected PHH to inoculate naïve HepG2/C3A. Using
this approach, we measured mean viral titers of 2.7 × 104 FFU/mL
for intracellular-derived HEV, for extracellular-derived HEVcc
viral infectivity was 100-fold lower. Propagation of both was ab-
rogated by RBV treatment (Fig. 5D). As pigs are the main natu-
ral reservoir for HEV gt 3, we next inoculated primary porcine

hepatocytes (PPH). As depicted in Fig. 5E, HEVcc infection of
PPH resulted in robust infection visualized by immunofluores-
cence microcopy and was ablated by RBV treatment. Presence of
infectious particles could be demonstrated for both types of viru-
ses; however, virus yields were lower compared to the PHH (Fig.
5F). Taken together, HEVcc particles produced in an optimized
cell culture system were able to efficiently infect PHH as well
as PPH.

Transcriptional Network Engaged upon HEV Infection of Primary
Hepatocytes. The established HEV infection model in PHH was
further applied to study host responses upon infection via tran-
scriptomic analysis. PHH were infected with p6_G1634R at a
MOI of 1 and monitored over time for 168 h (Fig. 5A). Total
RNA was extracted and supplied to Illumina RNAseq. First,
reads that mapped to the viral genome were analyzed. As ob-
served in the previous experiment, HEV RNA accumulated over
the course of infection, reflected by the increase in number of
RNAseq reads that map to the viral reference genome, and were
reduced by RBV treatment (Fig. 6A). High background levels
also identified in the mock-infected control PHH arise from
reads derived from the host’s ribosomal subunit S17 erroneously
mapping to the HEV p6 reference genome. Same holds true for
the coverage plots, where peaks of coverage in all 4 setups were
identified resembling mismatches at the locus of the S17 in-
sertion on the HVR of p6 (29) (Fig. 6B). For HEV-infected
samples, viral transcripts increased over time and peaked at
48 h p.i. (Fig. 6B). Interestingly, HEV transcripts encoding ORF2/3
were more abundant than ORF1 genomic RNA (Fig. 6B). The
coverage of mapped reads was reduced in the RBV control (Fig.
6B). Analysis of the genomic stability of the introduced G1634R
variant demonstrated no change over the course of infection in
PHH (Fig. 6C).
Next, we investigated the transcriptional host response upon

HEV infection in PHH. High expression of hepatocyte markers
ALB and APOA2 and minimal expression of the fetal hepatocyte
marker AFP confirmed the maintenance of mature hepatocyte
phenotype in plated PHH during the course of the experiment
(Fig. 7A). Furthermore, intrinsic expression of pattern recognition
receptors (PRRs) DDX58 (also known as RIG-I), TLR3, and
IFIH1 (also known as MDA5) were detected, in addition to
downstream signaling molecules (SM) MYD88 and MAVS. These
data support the physiological ability of the PHH to detect viral
infections and induce innate immune signaling cascades (Fig. 7A).
Analysis of significant differentially expressed genes (DEGs) in
infected PHH compared to uninfected cells revealed distinct ex-
pression patterns for each time point with low overlap (Fig. 7B).
The highest number of DEGs was observed at 48 h p.i., which is in
line with the peak level of viral replication (Fig. 6 A and B). Next,
we compared the identified DEGs with previously described IFN-
regulated genes (IRGs) (30). All IRGs significantly up- (SI Ap-
pendix, Fig. S7A) or down-regulated (SI Appendix, Fig. S7B) at
least at one time point during the experiment are summarized in
SI Appendix, Fig. S7 A and B. The highest up-regulation of IRGs
was observed after 48 h pointing to a strong antiviral state in PHH
upon HEV infection (Fig. 7C). Inhibiting HEV replication by
RBV resulted in only a mild up-regulation of IRGs and DEGs.
Importantly, a strong down-regulation of IRGs and DEGs was
noted, which was induced by the antiviral therapy (Fig. 7C). In
line, this down-regulation was also observed in uninfected but
RBV-treated cells (SI Appendix, Fig. S7C). When comparing
transcript expression at different time points of the experiment
with the expression at 4 h, we noted a steady increase in the
number of DEGs. This was true for the infected (SI Appendix, Fig.
S7D) as well as for the uninfected PHH (SI Appendix, Fig. S8C)
resembling the differentiation of primary cells once plated. A
comparison of DEGs and IRGs at 48 h p.i. up-regulated in the
infected PHH and down-regulated in the infected and RBV-treated
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cells revealed a regulation of distinct genes that did not overlap
(Fig. 7D). Gene ontology (GO) enrichment analyses of biological
processes of all significant DEGs of HEV-infected PHH compared
to uninfected cells over the course of infection identified pathways
involved in the cells defense responses at 24, 48, and 168 h p.i.
(Fig. 7 E–G). Same observations in the comparison between the
infected PHH and infected but RBV-treated cells (SI Appendix,
Fig. S8 A and B) point to a specific regulation of genes caused by
the viral infection and replication. Furthermore, the type I IFN
signaling pathway (GO:0060337) and cytoplasmic PRR signaling
pathway in response to virus (GO:0039528) are among the path-
ways with the highest ratio of significantly differentially regulated
genes to the total number of genes associated to the pathways,
indicating the competence of PHH to sense viral infections and

trigger IFN release and innate immune response (Fig. 7E). In-
terestingly, at 24 h p.i., mainly genes associated with metabolic
processes were significantly regulated (Fig. 7E). The fold changes
in expression of members of the pathway defense response
(GO:0006952) as representative of the primary regulated pathways
are depicted in SI Appendix, Fig. S6B. Ribavirin treatment in un-
infected PHH interfered with the expression of certain genes (SI
Appendix, Fig. S7C) of predominantly metabolic pathways not in-
volved in innate immune responses (SI Appendix, Fig. S7E). The
PHH transcriptome changed also over time in the mock-infected
cells with mainly genes belonging to cellular processes and meta-
bolic processes and minor IRG-related genes (SI Appendix, Fig.
S8C). Using microarray analysis, Yu et al. (31) previously studied
the host response to HEV infection in multiple experimentally
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infected chimpanzees. They identified several significantly up-
regulated genes that, with the exception of 5 genes, were also
up-regulated in inoculated PHH, predominantly 48 h p.i. (Fig. 7F).
In summary, these results demonstrate the ability of our HEVcc

virions to establish robust infections and replicate in plated adult
PHH. Furthermore, we show that PHH are able to sense HEV
infections and trigger a temporally structured transcriptional de-
fense response.

Discussion
Although many groups have successfully propagated various HEV
strains in different cell lines, viral replication often remained low
and could often only be detected by sensitive PCR methods. An-
other limitation relates to the distinct phenotypic characteristics of
the cell lines utilized, including nonhepatic lineages (e.g., A549),
recombinant manipulations (e.g., PLC/PRF/5 expressing hepatitis
B viral genes), or the lack of a proper immune response (e.g., Huh-
7.5). The historical lack of an efficient in vitro culture system se-
verely restricts HEV research. As a consequence, off-label RBV
and pegIFN-α remain the treatment of choice in chronic infections
with currently no drugs being approved that specifically target
HEV (7).
Here we report the establishment of a simple yet robust cell

culture HEV infection system. Our model is based on the HEV
genotype 3 Kernow-C1 p6 strain and the human hepatoma cell
lines HepG2 and HepG2/C3A combined with different media
conditions. The HEV p6 strain was originally isolated by Shukla
and colleagues using fecal samples obtained from an HIV patient
chronically coinfected with HEV (32). The virus was semi-
purified from the feces and used to inoculate several cell lines.
After 6 passages, an adapted virus was isolated and termed
Kernow-C1/p6. Sequence analysis data showed an insertion of 58
amino acids of the human ribosomal subunit S17 in the HVR of

ORF1 (29). A minority of viral genomes containing the S17 in-
sertion was identified in fecal samples from which the original
Kernow-C1 strain was isolated, indicating that the insertion was
obtained in the infected host and was not a cell culture artifact
(29). By testing 32 different cell and media conditions, we identi-
fied the best combination for the production of highly infectious
HEVcc, i.e., when HepG2 cells supplemented with DMEM were
transfected and HepG2/C3A cells cultured with MEM low IgG
FCS were infected with the harvested intracellular particles (Fig.
1). HepG2/C3A cells were selected for strong contact inhibition of
growth, which seemed to favor the HEV propagation after infec-
tion. The low IgG FCS was already used in HEV clearance studies
by Farcet et al. (33) and probably shows less interference in the
HEV entry pathway compared to other FCS charges. Comparably,
in another published HEV cell culture system the authors in-
oculate target cells completely without the addition of FCS (34).
However, further investigations are required to understand the
effect of FCS products during HEV infection. In line, a recent
study with the aim to isolate virus from human clinical specimens
also described distinct medium supplements and the combinations
thereof to increase viral loads in cell culture (19). Of note, by
harvesting virions from the supernatant as well as from lysed cells,
we were able to handle both enveloped and nonenveloped virus. In
the future, this offers the opportunity not only to study fecal–oral
transmission events caused by nonenveloped virions. In clinical
transfusion and transplantation settings, the transmission of quasi-
enveloped particles might be of more relevance as this state is the
proposed state for HEV circulating in the blood stream.
The successful production of HEVtcp as single round infectious

particles may further prove valuable for vaccination approaches in
the future (Fig. 2). Since deletion of large parts of the ORF2/3
coding region was possible, this portion of the viral genome does
not contain crucial cis-active elements required for packaging.
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These results confirmed and extended previous findings of Ding
et al., who established a HEV trans-complementation approach
based on stable packaging cells to identify a viroporin function of
ORF3 (35).
The introduction of a mutation in the RNA-dependent RNA

polymerase (G1634R) allowed an even further increase in viral
titers of intracellular-derived particles, which was confirmed in
another gt 3 strain (Fig. 3). Generally, the optimized protocol
was adaptable to this HEV83-2 strain, although viral titers did
not reach p6 levels. This is most probably due to less efficient
replication of the strain compared to p6 (16). The G1634R
mutation was originally identified as single nucleotide variant in
chronically HEV-infected transplant patients undergoing treat-
ment failure. Subsequent analysis revealed increased replication
rates in vitro, while the RBV sensitivity was unmodified (13, 22).
Similar specific infectivities between the p6_wt and p6_G1634R
underlined this replication-dependent phenotype (Fig. 3).
Characterization of the biophysical properties of high-titer pro-
duced p6_wt and p6_G1634R demonstrated comparable fea-
tures in RNA copy numbers (SI Appendix, Fig. S5). In contrast to
previous studies (26–28), these viral particles were able to rep-
licate in humanized mice to high RNA levels detectable in
plasma (Fig. 4) creating the opportunity to study a genetically
defined virus in an HEV pathogenesis and vaccine model.
Cancer cell lines can be advantageous for culturing HEV due to

easy handling, robustness, and availability, although tumor-derived
cell lines may not faithfully recapitulate some cellular pathways
compared to primary cells. Thus, stem cell-derived cellular systems
or primary cells offer a more authentic system for studying HEV
(36). Inoculation of PHH and importantly PPH cultures with high
titer HEVcc allowed a robust infection in these cells determined
by RT-PCR and immunofluorescence assays as well as a high de
novo virus production (Fig. 5). These results represent data of
robust HEV infection of PPH, creating the opportunity to study
species-specific aspects of the viral life cycle in primary cells. So
far, only a porcine embryonic stem cell-derived cell line has been
developed for HEV in vitro studies (37).
To elucidate the applicability of the primary cells to study virus–

host interactions, we applied RNAseq to infected PHH. First, we
mapped the reads to the viral genome (Fig. 6). Interestingly, the
ORF2/3-specific transcripts were far more abundant than the
ORF1-encoding transcript suggesting a quantitative regulation

of HEV protein expression during viral replication. This finding
might explain the difficulty to detect ORF1 expression in HEV-
positive samples (38). As the molecular mechanisms associated
with HEV replication and cellular antiviral responses against HEV
are only rudimentary understood, we determined the transcrip-
tional landscape induced by HEV infection in PHH via RNAseq
(Fig. 7). HEV-induced regulation of genes was timely structured in
adult PHH with minimal overlap observed between the time
points. Of note, PHH can have a donor to donor difference in the
transcriptional response, which can influence the individual tran-
scriptional landscape. Therefore, we compared our results to a
microarray analysis by Yu et al., who previously studied the host
response to HEV in multiple experimentally infected chimpanzees
(31). Interestingly, we observed a high overlap between the genes
significantly up-regulated in PHH 48 h p.i. and up-regulated in the
liver of the infected chimpanzees (Fig. 7F). By comparing mock-
treated and RBV-treated PHH, both HEV inoculated or not, we
show that RBV leads to a repression of specific genes. In the case
of HCV, similar observations have been made, where RBV down-
regulates abnormally preactivated ISGs following HCV infection
of PHH, which then restored IFN-responsiveness in the hepatic
environment (39).
In conclusion, this improved HEVcc system provides a powerful

tool for understanding basic HEV infection biology in various
human hepatocyte systems and should accelerate the discovery of
antiviral drugs and vaccines.
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